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SI Methods
Bulk Geochemistry, Geology, and Tree-Canopy Cover. We collected
bedrock using a sledgehammer or gas-powered drill to obtain the
freshest (least-weathered) samples possible. Sample locations
were determined by handheld Global Positioning System devices
and are generally accurate to an estimated 20 m or less. In the
laboratory, we crushed each sample and powdered a ∼40-g
subsample to <50 microns in a tungsten carbide shatterbox.
Powders were fired at 550 °C for 12 h to drive off water and
organic material. For major- and minor-element geochemistry
(reported in both wt % and mg/g in Dataset S3) we fused
carefully massed powders and lithium tetraborate (typically at
a ratio of 1:9) into beads in an autofluxer. For trace-element
geochemistry (reported in ppm in Dataset S3) we pressed sample
powder with SPEX Ultrabind binder into cylindrical pellets. The
resulting beads and pellets were analyzed by X-ray flourescence
(XRF) using a 4000-W wavelength-dispersive XRF spectrometer
at the University of Wyoming (UW). Major-, minor-, and trace-
element data are reported in Dataset S3. Major rock-forming
elements are shown in Figs. 2 and 3 and Fig. S3. Element con-
centrations shown in Fig. S4 were reported in ref. 1. Accuracy of
the UW XRF spectrometer was usually ±1% of the measured
concentration for high-abundance major elements, but was
somewhat poorer (e.g., ±3%) for low-abundance minor ele-
ments. Trace-element data were generally reproducible to within
10% in duplicate pellets for elements reported in Datasets S3
and S4.
We grouped samples into sites first by rock type (and hence

geochemistry and mineralogy) and second by proximity. We
classified rocks based on observed mineralogy or geochemistry
and by intersection of sample locations with digitized geologic
maps (2). To match sample locations with climate, topography,
and vegetation, we intersected sample locations with available
datasets of elevation, mean annual precipitation (3), mean an-
nual temperature (3), and remotely sensed tree-canopy cover
(4). The native resolution of the tree-canopy cover dataset is
30 m, but we resampled the raster so that each pixel took on the
average value of the pixels within a ∼150-m radius of each
sample point. Our measurements of bedrock geochemistry and
field observations of mineralogy indicate that bulk geochemistry
is generally uniform over this scale within individual plutons.
Varying the size of the averaging window for tree-canopy cover
does not significantly alter any of the trends shown in Figs. 2 and 3.

Biomass Survey and Tree Cores for Primary Productivity. For two of
the rock types shown in Fig. 2, we delineated plots around forest
stands that are representative of our bedrock sample sites (at
the stars shown in Fig. 2). We measured the diameters of all trees
with diameter at breast height (DBH) > 10 cm and estimated
aboveground stem biomass using species-specific allometric
equations found in the Software for Computing Plant Biomass
(BIOPAK) library (5). We randomly selected and cored a subset
of trees that were representative in size of the trees at each plot.
We counted annual tree growth rings from the cores to estimate
the age of each tree and then estimated lifetime-integrated
growth rates (i.e., productivity) for each tree by dividing biomass
by age. For each site, we extrapolated the mean lifetime-inte-
grated productivity of the cored trees to the entire stand and
thus estimated average plot-wide productivity per unit area
(Datasets S1 and S2). The average productivity of the site de-
veloped on Bass Lake tonalite is 0.36 ± 0.11 kg m−2 y−1 stem
biomass, which is 14.4 times higher than the estimated pro-

ductivity of 0.025 ± 0.06 kg m−2 y−1 stem biomass at the Bald
Mountain site. We judge that these estimates represent a realistic
assessment of the relative differences in productivity among the sites.
However, as absolute measures they may be inaccurate. Moreover
there are potential biases to consider in any comparisons. For ex-
ample, our data indicate that trees have grown faster as they have
aged. This may introduce a bias due to differences in mean stand age
between the plots. Trees on the tonalite plot are younger on average
than on the granite plot. Together, the age-dependent growth rate
and difference in age would make the measured differences in pro-
ductivity between two rock types seem less pronounced than they
actually are. Hence, based on known potential biases in our analysis,
we judge that our estimate of the difference in productivity is con-
servative in representing Bald Mountain as a less productive site.

Erosion Rates from 10Be. We measured 10Be concentrations in
quartz to assess rates of erosion from soil-mantled and exposed-
bedrock terrain in the CZO vicinity. Our analysis includes both
catchment-wide averages measured from stream sediment and
point measurements from slopes. We separated quartz from our
samples using standard techniques (6, 7) and then spiked the
quartz with 9Be, dissolved it, and extracted Be at UW following
standard procedures. 10Be/9Be ratios were measured by accel-
erator mass spectrometry (AMS) at the Purdue Rare Isotope
Measurement Laboratory (8) and calibrated with revised ICN
Biomedical standards. Process blanks typically had 10Be/9Be
ratios <10 × 10−15. We use the AMS data to calculate 10Be
concentrations in quartz. Results are reported in Dataset S6.
We determined site-specific rates of 10Be production due to

cosmic-ray muons and high-energy neutrons using relationships
from Granger and Smith (9) and scaling factors for latitude and
atmospheric pressure from Stone (10). Elevation, atmospheric
pressure, and latitude were determined from 30-m DEMs. We
corrected production rates for local shielding by biomass using
a 30-m pixel resolution dataset (11). We also corrected for snow
shielding (12) using a local relationship between snow–water
equivalent and elevation constructed from snow-course data
(13). We corrected for topographic and self-shielding of bedrock
surfaces and catchments (14) using average slopes calculated from
best-fit planar surfaces to catchment rims.
Using standard techniques (15–17) we inferred erosion rates

from the 10Be concentrations and production rates, correcting
data from soil-mantled terrain for biases introduced by chemical
erosion (18). Results are shown in Fig. 4 and compiled in
Dataset S6. Reported uncertainties in erosion rates are propa-
gated from analytical uncertainties of 10Be/9Be from the AMS
measurements.

Landsat False-Color Images. Images shown in Figs. 1 and 2 were
mosaicked from scenes taken in 2011 by the Landsat 5 Thematic
Mapper. We use false color to highlight contrasts between veg-
etation and exposed bedrock; red is band 5 (reflected infrared
with wavelength 1.55–1.75 μm), green is band 4 (reflected in-
frared with wavelength 0.76–0.90 μm), and blue is band 3 (red
with wavelength 0.63–0.69 μm) (19).

Discussion
Lack of High-Intensity Fire and Anthropogenic Disturbance on Bare
Areas.Although ecosystems in the Sierra Nevada have coevolved
with fire (20), high-intensity burns can create spatial hetero-
geneities in forest cover (21). However, field evidence for fire,
including burnt stumps and fire-induced spallation cracking (22),
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is scarce on prominent bare areas including Bald Mountain,
Shuteye Peak, and Snow Corral Meadow. Therefore, we judge it
unlikely that these areas have recently experienced fire of the
magnitude needed to strip vegetation at the pluton scale. However,
differences in available fuel across sites with differences in biomass
likely affect the intensity of fires and play a role in the nature and
timing of forest response to disturbance. Furthermore, postfire
primary succession may be limited by both N availability and by P
availability at sites with low parent-material P concentrations. We
observe no evidence of cut stumps in the exposed-bedrock areas
studied here. Hence there is no evidence that the dichotomy in
forest cover is related to widespread anthropogenic disturbance.

Bedrock Fractures.Across our sites, bedrock fracturing is obscured
by amantle of soil, making it difficult to assess the role of fractures
in the distribution of vegetation. In the Sierra Nevada, numerous
mechanisms for fracture generation have been proposed (main
text). However, no study has demonstrated a systematic con-
nection between bedrock composition and fracturing. Such
a connection would be expected if fracturing is an important
regulator of vegetation; the strong correlations presented in Fig. 3
imply that anything that strongly influences vegetation should be
correlated with bedrock composition as well. It is possible that
fracture production varied in the course of pluton emplacement,
which could produce correlations with bedrock composition.
However, the relative and absolute emplacement history of the
different plutons studied here offers insight on the potential for
such correlations. In general, as the Sierra Nevada Batholith
coalesced, bedrock composition typically graded from mafic to
felsic with successive emplacement of different plutons (3). In
theory, this could produce a correlation between composition

and fracture density, if the processes of fracture production varied
over time as plutons were emplaced. However, this is unlikely
given that our sites span multiple, overprinted sequences of pluton
emplacement. For example, the felsic Shuteye Peak granite was
intruded by more mafic plutons at around 105 Ma (2, 23; Fig. 1C).
In contrast, sometime after ∼100 Ma, the Dinkey Creek Grano-
diorite was intruded by the more felsic Bald Mountain Granite
(23, 24; Fig. 1D). A complicated history of fracture production
would be needed to produce a strong correlation between em-
placement-related fracturing and geochemistry. This argues
against strong fracture control of the vegetation trends shown in
Fig. 3. However, we cannot rule it out in the absence of fracture
density measurements across the sampling sites.

Erosion Rates from Cosmogenic Nuclides: Literature Compilation. We
used a recent compilation of cosmogenic-nuclide–based erosion
rates (25) as a starting point for the data-mining effort that re-
sulted in Dataset S7, which is plotted in Fig. 4 (main text, gray
symbols). Data are reported here as they originally appeared in
the literature. We restricted our worldwide survey to non-
glaciated sites underlain by granitic bedrock (16, 26–62). We
compiled both 10Be and 26Al data from bedrock, saprolite, and
detrital sediment. If separate erosion rates were reported from
both 10Be and 26Al measurements, we include only the rate in-
ferred from 10Be. Where replicate analyses of the same sample
were reported, we averaged the erosion rates inferred from each
replicate and appended sample names with “_av” in Dataset S7.
Averages were calculated using the inverse of reported erosion
rates because the measured parameter (i.e., nuclide concentra-
tion) scales with the inverse of erosion rate (16).
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Fig. S1. Multivariate comparison of tree-canopy cover in area underlain by Bald Mountain Granite (see Fig. 1 for location) and surrounding nonglaciated
landscape, shown as normalized histograms (Bottom Left) and cumulative density functions (Upper Right). Nearly 45% of the Bald Mountain Granite is devoid
of tree-canopy cover (black line). In comparison, the surrounding 3,500 km2 of nonglaciated terrain in the San Joaquin and Kings River watersheds has
a significantly lower proportion of bare and sparsely vegetated area (blue line). The fraction of bare area is likewise lower for a subsampled 150 km2 region
that is identical to Bald Mountain in its multivariate probability distribution of slope, aspect, and elevation (red line). The offset between the black and red
lines demonstrates that the paucity of vegetation on Bald Mountain cannot be explained by climatic or topographic factors. Rather it is consistent with
lithologic control on vegetation across the site (as shown in Figs. 1–3 of the main article). Here, slope, aspect, and elevation are assumed to capture local
differences in climate and topography. Our analysis was performed at the 30-m scale, which is the native resolution of the tree-canopy cover dataset (4). Aspect
was derived from a 30-m DEM. We derived slope from a 10-m DEM and resampled the results into a 30-m–scale raster to match the other datasets. The
multivariate probability distribution of slope, aspect, and elevation for all of the 30 m pixels in Bald Mountain was binned in three dimensions, and the
surrounding landscape (i.e., the region outside of Bald Mountain) was randomly subsampled to replicate the 3D distribution of Bald Mountain data. To
produce the plot shown, we split Bald Mountain into six elevation bins, three slope bins, and five aspect bins. Results are not strongly sensitive to bin size.
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Fig. S2. Site-wide average (±SEM) tree-canopy versus site-wide averages of elevation (A), average annual precipitation (B), and mean annual temperature
plotted backward to reflect increasing elevation (C). Neither elevation nor these average climate indices can explain the variations in forest cover across the
sites. Figs. 1B and 3 (main text) show sample locations and Dataset S4 tabulates data.
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Fig. S3. Site-wide averages of tree-canopy cover versus site-wide average major and minor element concentrations from bulk geochemical analyses of
bedrock samples. Error bars correspond to SEMs of data reported in Dataset S4. These plots show the same data as Fig. 3 (main text). Here they are loga-
rithmically transformed to reveal relative differences in canopy cover and bedrock geochemistry. Tree-canopy cover spans more than an order of magnitude
across the sites, comparable to the large relative differences in P, Mg, Ca, and Fe concentrations. Site locations are shown on map (Inset).
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Fig. S4. Modal mineralogy covaries closely with bulk-elemental composition in bedrock samples from a subset of plutons considered in the main text. K-
feldspar is nearly absent from rocks with low silica content, whereas the mafic minerals biotite and hornblende are nearly absent from rocks with high silica
content. Data were originally reported in ref. 1 but are included for completeness in Dataset S5. When the trends in mineralogy and geochemistry shown here
are coupled with trends in tree-canopy cover and geochemistry shown in Fig. 3 (main text), it is evident that tree-canopy cover generally increases with color
index and plagioclase content and decreases with quartz and K-feldspar content in bedrock.
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Fig. S5. Catchment-wide 10Be-inferred erosion rates from the western Sierra Nevada increase with increasing average hillslope gradient (Dataset S6). Vertical
error bars reflect propagated analytical uncertainties; note that some error bars are smaller than the symbol size. For a given average hillslope gradient,
predominantly soil-mantled catchments (open circles, n = 13) have a higher erosion rate than predominantly exposed-rock catchments (black diamonds, n = 7).
We calculated centered, least-squares regression statistics for the relationship between erosion rate and hillslope gradient for each surface-cover class. We
found that the erosion-rate intercept (which represents the erosion rate predicted at the overall average hillslope gradient of 17°) is significantly higher (P <
0.05) for soil-mantled catchments (56.6 ± 3.0 mm kyr−1) than for exposed-rock catchments (33.3 ± 1.1 mm kyr−1). Note these averages differ from the averages
in Fig. 4 of the main text because they only pertain to the catchment-scale estimates of erosion rates.
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Datasets S1–S7 (XLS)

Hahm et al. www.pnas.org/cgi/content/short/1315667111 7 of 7

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1315667111/-/DCSupplemental/sd01.xls
www.pnas.org/cgi/content/short/1315667111

